现有甲乙两个团队之间进行某种比赛,与身高有很大的关系(假定忽略其它因素),为了预知比赛结果,在甲乙两个团队中各随机抽调出8人,测量身高并绘出茎叶图如图。(1)请你根据茎叶图判断一下如果是跨越障碍物比赛,哪个团队胜出的可能性大一些?说明你的理由。(2)如果是进行队形整齐性比赛(身高相对要整齐),哪个团队胜出的可能性又大一些?说明你的理由。(3)从甲团队的这抽出的8人中的身高低于170cm的队员中再抽取两名进行某种灵巧性训练,则身高为158cm的那位队员被选中的概率是多少?
(本小题满分12分) 已知数列是等比数列,为其前n项和。 (I)设,求; (II)若成等差数列,证明也成等差数列。
求与圆外切且与直线相切于点的圆的方程.
已知某个几何体的三视图如图(主视图的弧线是半圆),根据图中标出的数据: ⑴求这个组合体的表面积; ⑵若组合体的底部几何体记为ABCD-A1B1C1D1,如图,其中A1B1BA为正方形. ①求证:A1B⊥平面AB1C1D; ②若P为棱A1B1上一点,求AP+PC1的最小值.
求经过直线与圆的交点,且经过点的圆的 方程.
如图,在四棱锥S-ABCD中,底面ABCD是菱形, SA⊥底面ABCD,M为SA的中点,N为CD的中点. ⑴证明:平面SBD⊥平面SAC; ⑵证明:直线MN//平面SBC.