(本小题满分14分) 设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E. (1)求轨迹E的方程,并说明该方程所表示曲线的形状; (2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程; (3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
(本小题满分12分)函数f(x)=x2-2x+2在闭区间[t,t+1](t∈R)上的最小值为g(t).(1)试写出g(t)的表达式;(2)作g(t)的图象并写出g(t)的最小值。
(本小题满分12分)设函数f(x)=是奇函数(a,b,c都是整数)且f(1)=2,f(2)<3(1)求a,b,c的值;(2)当x<0,f(x)的单调性如何?用单调性定义证明你的结论。(3)当x>0时,求函数f(x)的最小值。
(本小题满分12分)已知命题p:“”,命题q:“”,若“pq”为真命题,求实数a的取值范围。
(本小题满分12分)已知P={x|x2-8x-20≤0},S={x|1-m≤x≤1+m}(1)是否存在实数m,使x∈P是x∈S的充要条件,若存在,求出m的取值范围;(2)是否存在实数m,使x∈P是x∈S的必要条件,若存在,求出m的取值范围.
选修4—5:不等式选讲设函数.(1)解不等式; (2)求函数的最小值.