选修4—5:不等式选讲设函数.(1)解不等式; (2)求函数的最小值.
(本小题满分12分) 已知点为圆:上任意一点,点(-1,0),线段的垂直平分线和线段相交于点. (Ⅰ)求点的轨迹的方程; (Ⅱ)已知点为曲线E上任意一点, 求证:点关于直线的对称点为定点,并求出该定点的坐标.
(本小题满分12分) 在正三棱柱中,,且是的中点,点在上. (Ⅰ)试确定点的位置,使; (Ⅱ)当时,求二面角的大小.
(本小题满分12分) 某社区举办2010年上海世博会知识宣传活动,进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案,参加者每次从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖. (Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人笑说:我只知道若从盒中抽两张都不是“海宝”卡的概率是,求抽奖者获奖的概率; (Ⅱ)现有甲乙丙丁四人依次抽奖,抽后放回,另一个人再抽,用表示获奖的人数,求的分布列及.
已知△的周长为,且. (Ⅰ)求边长的值; (Ⅱ)若(结果用反三角函数值表示).
如图,已知椭圆 x 2 a 2 + y 2 b 2 = 1 a > b > 0 过点 1 , 2 2 ,离心率为 2 2 ,左右焦点分别为 F 1 , F 2 .点 P 为直线 l : x + y = 2 上且不在 x 轴上的任意一点,直线 P F 1 和 P F 2 与椭圆的交点分别为 A , B 和 C , D . O 为坐标原点.
(Ⅰ)求椭圆的标准方程; (Ⅱ)设直线 P F 1 , P F 2 斜率分别为 k 1 , k 2 . (ⅰ)证明: 1 k 1 - 3 k 2 = 2
(ⅱ)问直线 l 上是否存在一点 P ,使直线 O A , O B , O C , O D 的斜率 k O A , k O B , k O C , k O D 满足 k O A + k O B + k O C + k O D = 0 ?若存在,求出所有满足条件的点 P 的坐标;若不存在,说明理由.