设a为实数,记函数的最大值为.(1)设t=,求t的取值范围,并把f(x)表示为t的函数m(t) ;(2)求 ;(3)试求满足的所有实数a.
(本小题满分14分)如图所示,在边长为12的正方形中,点在线段上,且,,作//,分别交,于点,,作//,分别交,于点,,将该正方形沿,折叠,使得与重合,构成如图2所示的三棱柱.(Ⅰ)求证:平面;(Ⅱ)求四棱锥的体积;
(本小题满分14分)已知以角为钝角的的内角A、B、C的对边分别为a、b、c,,且(1)求角的大小;(2)求的取值范围.
(本小题满分14分)已知定义在上的函数,满足条件:①,②对非零实数,都有.(1)求函数的解析式;(2)设函数,直线分别与函数,交于、两点,(其中);设,为数列的前项和,求证:当时, .
(本小题满分12分)已知函数,其中为常数。(1)当时,>恒成立,求的取值范围;(2)求的单调区间。
、(本小题满分12分)已知公差不为零的等差数列6项和为60,且的等比中项。(1)求数列的通项公式;(2)若数列