已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为,且.(1)求动点的轨迹的方程;(2)已知圆过定点,圆心在轨迹上运动,且圆与轴交于、两点,设,,求的最大值.
已知向量,函数的最小正周期为.(1)求函数的单调增区间;(2)如果△ABC的三边所对的角分别为,且满足的值.
已知函数,其中.(1)当时,求曲线在原点处的切线方程;(2)求的单调区间;(3)若上存在最大值和最小值,求的取值范围.
已知椭圆,过焦点垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形.(1)求椭圆的方程;(2)过点的直线l交椭圆于A,B两点,交直线于点E,判断是否为定值,若是,计算出该定值;不是,说明理由.
设数列为等差数列,且;数列的前n项和为.(1)求数列,的通项公式;(2)若为数学的前n项和,求.
如图,在多面体中,四边形是正方形,AC=AB=1,.(1)求证:;(2)求二面角的余弦值的大小.