已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为,且.(1)求动点的轨迹的方程;(2)已知圆过定点,圆心在轨迹上运动,且圆与轴交于、两点,设,,求的最大值.
(本题12分) 如图,四棱锥P-ABCD的底面是正方形,PA⊥底面ABCD,∠PDA=45°,点E、F分别为棱AB、PD的中点. (1)求证:平面PCD;(2)求证:平面PCE⊥平面PCD.
(本题12分) 如图,在直三棱柱(侧棱与底面垂直的三棱柱)中,,,,是边的中点. (Ⅰ)求证:; (Ⅱ)求证:∥面.
(本题12分) 已知函数 (1)求的定义域; (2)求的值域。
(本题12分) 已知的顶点,求: (1)边上的中线所在的直线方程 (2)边上的高所在的直线方程.
(本题14分) 设为实数,函数. (1)若,求的取值范围; (2)求的最小值; (3)设函数,直接写出(不需给出演算步骤)不等式的解集.