(本小题满分14分)过抛物线的对称轴上一点的直线与抛物线相交于M、N两点,自M、N向直线作垂线,垂足分别为、。 (Ⅰ)当时,求证:⊥;(Ⅱ)记、 、的面积分别为、、,是否存在,使得对任意的,都有成立。若存在,求出的值;若不存在,说明理由。
设函数f(x)=cos2ωx+sinωxcosωx+a(其中ω>0,a∈R),且f(x)的图象在y轴右侧的第一个最高点的横坐标为. (1)求ω的值; (2)如果f(x)在区间上的最小值为,求a的值.
已知向量m=(sinA,cosA),n=(,-1),m·n=1,且A为锐角. (1)求角A的大小; (2)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.
已知某海滨浴场的海浪高达y(米)是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t).下表是某日各时的浪高数据.
经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b. (1)根据以上数据,求出函数y=Acosωt+b的最小正周期T、振幅A及函数表达式; (2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多长时间可供冲浪者进行运动?
平面直角坐标系xOy内有向量=(1,7),=(5,1),=(2,1),点Q为直线OP上一动点. (1)当·取得最小值时,求坐标; (2)当点Q满足(1)中条件时,求cos∠AQB的值.
(1)已知α是第一象限的角,且cosα=,求的值. (2)化简,其中π<α<2π.