已知抛物线的顶点在坐标原点,焦点为,点是点关于轴的对称点,过点的直线交抛物线于两点。(Ⅰ)试问在轴上是否存在不同于点的一点,使得与轴所在的直线所成的锐角相等,若存在,求出定点的坐标,若不存在说明理由。(Ⅱ)若的面积为,求向量的夹角;
(本小题满分16分)设、是函数的两个极值点.(1)若,求函数的解析式;(2)若,求的最大值;(3)设函数,,当时,求证:.
(本小题满分16分)设数列满足:,, (1)求证:;(2)若,对任意的正整数,恒成立.求m的取值范围.
(本小题满分15分)已知函数(1)求函数的对称轴方程;(2)当时,若函数有零点,求m的范围;(3)若,,求的值.
(本小题满分15分) 设函数是定义在上的奇函数,当时,(a为实数).(1)当时,求的解析式;(2)当时,试判断在上的单调性,并证明你的结论.
(本小题满分14分)已知等差数列{an}的前n项和为Sn,a1=1+,S3=9+3(1)求数列{an}的通项an与前n项和Sn;(2)设,求证:数列{bn}中任意不同的三项都不可能成为等比数列.