已知函数的图象的一部分如下图所示.(Ⅰ)求函数的解析式;(Ⅱ)当时,求函数的最大值与最小值及相应的的值.
某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:
(1)画出散点图; (2)求回归直线方程; (3)试预测广告费支出为10百万元时,销售额多大?
如图,在正方形内有一扇形(见阴影部分),扇形对应的圆心是正方形的一顶点,半径为正方形的边长.在这个图形上随机撒一粒黄豆,求它落在扇形外正方形内的概率.
解放军某部在实兵演练对抗比赛中,红、蓝两个小组均派6人参加实弹射击,其所得成绩的茎叶图如图所示. (1)求出红军射击的中位数; (2)根据茎叶图,计算红、蓝两个小组射击成绩的方差,并说明哪个小组的成绩相对比较稳定;
已知函数,. (1)若函数存在单调递减区间,求的取值范围; (2)当时,试讨论这两个函数图象的交点个数.
一种十字绣作品由相同的小正方形构成,图①,②,③,④分别是制作该作品前四步时对应的图案,按照如此规律,第步完成时对应图案中所包含小正方形的个数记为. ①②③④ (1)求出,,,的值; (2)利用归纳推理,归纳出与的关系式; (3)猜想的表达式,并写出推导过程.