某校高三文科分为五个班.高三数学测试后, 随机地在各班抽取部分学生进行成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了18人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.(1)问各班被抽取的学生人数各为多少人?(2)在抽取的所有学生中,任取一名学生,求分数不小于90分的概率.
在如图所示的几何体中,四边形是正方形,平面,,分别为,的中点,且. (Ⅰ)求证:平面平面; (Ⅱ)求三棱锥与四棱锥的体积之比.
南充市某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为,,经测量米,米,米,. (Ⅰ)求的长度; (Ⅱ)若环境标志的底座每平方米造价为5000元,不考虑其他因素,小李、小王谁的设计使建造费用最低(请说明理由)?最低造价为多少?()
已知是正数列组成的数列,,且点在函数的图像上, (Ⅰ)求的通项公式; (Ⅱ)若数列满足,,求证:.
设函数f(x)=. (Ⅰ)当a=-5时,求函数f(x)的定义域; (II)若函数f(x)的定义域为R,试求a的取值范围.
已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为. (Ⅰ)把的参数方程化为极坐标方程; (Ⅱ)求与交点的极坐标().