已知是正数列组成的数列,,且点在函数的图像上,(Ⅰ)求的通项公式;(Ⅱ)若数列满足,,求证:.
如图,椭圆的离心率为,直线和所围成的矩形ABCD的面积为8.(1)求椭圆M的标准方程;(2)设直线与椭圆有两个不同的交点与矩形ABCD有两个不同的交点.求的最大值及取得最大值时的值.
已知一条曲线C在y轴右边,C上任一点到点F(2,0)的距离减去它到y轴的距离的差都是2(1)求曲线C的方程;(2)一直线l与曲线C交于A,B两点,且|AF|+|BF|=8,证:AB的垂直平分线恒过定点.
如图,在四面体ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2,(1)求证:AC⊥BD;(2)若平面ABD⊥平面CBD,且BD=,求二面角C﹣AD﹣B的余弦值.
如图,在中,边上的中线长为3,且,.(1)求的值;(2)求边的长.
已知数列满足,.(1)令,求证:数列为等比数列;(2)求满足的最小正整数