如图,在四面体ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2,(1)求证:AC⊥BD;(2)若平面ABD⊥平面CBD,且BD=,求二面角C﹣AD﹣B的余弦值.
(本小题满分12分)双曲线与双曲线有共同的渐近线,且经过点,椭圆以双曲线的焦点为焦点且椭圆上的点与焦点的最短距离为,求双曲线和椭圆的方程。
(本小题满分12分)某投资人打算投资甲、乙两个项目.根据预测,甲、乙两个项目最大盈利率分为 100%和50%,可能的最大亏损率分别为30%和10%.投资人计划投入的资金额不超过10万元.如果要求确保可能的投入资金的亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能产生的盈利最大?
(本小题满分10分)在中内角的对边分别为,且 (1)求的值;(2)如果b=4,且a=c,求的面积.
如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.
自点A(-3,3)发出的光线L射到x轴上,被x轴反射,其反射光线所在直线与圆x2+y2-4x-4y+7=0相切,求光线L所在的直线方程.