如图,在四面体ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2,(1)求证:AC⊥BD;(2)若平面ABD⊥平面CBD,且BD=,求二面角C﹣AD﹣B的余弦值.
设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6, 且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的. (1)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率; (2)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望.
(1)求的展开式中的常数项; (2)已知, 求的值.
二面角大小为,半平面内分别有点A、B,于C、于D,已知AC=4、CD=5,DB=6,求线段AB的长.
已知().求: (1)若,求的值域,并写出的单调递增区间; (2)若,求的值域.
解不等式: