(本小题满分14分)已知函数 (I)求曲线处的切线方程; (Ⅱ)求证函数在区间[0,1]上存在唯一的极值点,并用二分法求函数取得极值时相应x的近似值(误差不超过0.2);(参考数据e≈2.7,≈1.6,e0.3≈1.3)(III)当试求实数的取值范围。
设0< a,b,c <1,求证:(1-a)b,(1-b)c,(1-c)a,不可能同时大于.
已知a,b为正数,求证: (1)若+1>,则对于任何大于1的正数x,恒有ax+>b成立. (2)若对于任何大于1的实数x,恒有ax+>b成立,则+1>.
已知a,b,c均为正数,且a+b+c=1. 求证:(1+a)(1+b)(1+c)≥8(1-a)(1-b)(1-c).
设n∈N*,求证:++…+<.
已知a,b为正实数.求证:+≥a+b.