一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4。(Ⅰ)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为,将球放回袋中,然后再从袋中随机取一个球,该球的编号为,求+2的概率。
(本小题满分10分,矩阵与变换) 已知矩阵,,若矩阵对应的变换把直线变为直线,求直线的方程.
(本小题满分10分,几何证明选讲) 如图,与圆相切于点,是的中点,过点引圆的割线,与圆相交于点,连结. 求证:.
已知函数,. (1)若函数在上单调递增,求实数的取值范围; (2)若直线是函数图象的切线,求的最小值; (3)当时,若与的图象有两个交点,求证:. (取为,取为,取为)
数列,,满足:,,. (1)若数列是等差数列,求证:数列是等差数列; (2)若数列,都是等差数列,求证:数列从第二项起为等差数列; (3)若数列是等差数列,试判断当时,数列是否成等差数列?证明你的结论.
如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于两点.若直线斜率为时,. (1)求椭圆的标准方程; (2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.