(本小题满分12分)甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2,3,4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(Ⅰ)若左右手各取一球,求两只手中所取的球颜色不同的概率;(Ⅱ)若左右手依次各取两球,称同一手中 两球颜色相同的取法为成功取法,记两次取球(左右手依次各取两球为两次取球)的成功取法次数为随机变量X,求X的分布列和数学期望.
已知,n∈N+,An=2n2,Bn=3n,试比较An与Bn的大小, 并加以证明.
用数学归纳法证明对n∈N+都有.
平面内有n(n∈N+,n≥2)条直线,其中任何两条不平行,任何三条不过 同一点,证明:交点的个数f(n)=.
用反证法证明:如果x>,那么x2+2x-1≠0.
已知数列{an}满足a1=λ,an+1=an+n-4,λ∈R,n∈N+,对任意λ ∈R,证明:数列{an}不是等比数列.