在中,角、、对的边分别为、、,且,.(1)求的值;(2)若,求的面积.
(本小题满分12分)某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请名来自本校机械工程学院、海洋学院、医学院、经济学院的学生参加,各学院邀请的学生数如下表所示:
(Ⅰ)从这名学生中随机选出名学生发言,求这名学生中任意两个均不属于同一学院的概率; (Ⅱ)从这名学生中随机选出名学生发言,设来自医学院的学生数为,求随机变量的概率分布列和数学期望.
(本小题满分12分)设的内角所对的边分别为,已知,. (Ⅰ)求角; (Ⅱ)若,求的面积.
【原创】设集合,从S的所有非空子集中,等可能地取出一个.(Ⅰ)设,若,则,就称子集A满足性质,求所取出的非空子集满足性质的概率;(Ⅱ)所取出的非空子集的最大元素为,求的分布列和数学期望.
如图,在空间直角坐标系O - xyz中,正四棱锥P - ABCD的侧棱长与底边长都为,点M,N分别在PA,BD上,且.(1)求证:MN⊥AD;(2)求MN与平面PAD所成角的正弦值.
(选修4—5:不等式证明选讲)已知均为正数,证明:.