设是公比大于1的等比数列,为数列的前项和.已知,且构成等差数列.(Ⅰ)求数列的通项公式;(Ⅱ)令,求数列的前项和.
命题:函数的定义域为,命题:的定义域为,若是的充分条件,求实数的取值范围。
已知椭圆两焦点坐标分别是,,并且经过点,求椭圆的标准方程。
已知椭圆:()的离心率,左、右焦点分别为,点,点在线段的中垂线上.(1)求椭圆的方程;(2)设直线:与椭圆交于、两点,直线与的倾斜角分别为、,且,求证:直线经过定点,并求该定点的坐标
已知函数.()(1)若且函数在其定义域内为增函数,求实数的取值范围;(2)若函数在存在极值,求实数的取值范围
(1)把4个不相同的球放入七个不相同的盒子,每个盒子至多有一个球的不同放法有多少种?(2)把7个相同的球放入四个不相同的盒子,每个盒子至少有一个球的不同放法有多少种?(3)把7个不相同的球放入四个不相同的盒子,每个盒子至少有一个球的不同放法有多少种?