.已知等比数列的各项均为正数,且.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前n项和.(Ⅲ)设,求数列{}的前项和.
(本小题12分)已知数列的前项和为,,(1)求(2)猜想的表达式,并用数学归纳法证明。
(本小题12分)已知a,b,c∈(0,1),求证:(1-a)b, (1-b)c, (1-c)a.不能同时大于
(本小题共12分) 给定函数和(I)求证: 总有两个极值点;(II)若和有相同的极值点,求的值.
(本小题共10分)已知函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)求函数在上的最大值和最小值.
已知函数,点.(Ⅰ)若,函数在上既能取到极大值,又能取到极小值,求的取值范围;(Ⅱ) 当时,对任意的恒成立,求的取值范围;(Ⅲ)若,函数在和处取得极值,且,是坐标原点,证明:直线与直线不可能垂直.