若非零函数对任意实数均有,且当时(1)求证:;(2)求证:为R上的减函数;(3)当时, 对恒有,求实数的取值范围.
已知函数. (I)当时,求函数的单调区间; (II)若函数的图象在点处的切线的倾斜角为45o,问:m在什么范围取值时,对于任意的,函数在区间上总存在极值?
设椭圆C:的左、右焦点分别为F1、F2,A是椭圆C上的一点,,坐标原点O到直线AF1的距离为. (Ⅰ)求椭圆C的方程; (Ⅱ)设Q是椭圆C上的一点,过点Q的直线l 交 x轴于点,交 y轴于点M,若,求直线l 的斜率.
(本小题满分12分) 设数列 (1)求 (2)求证:数列{}是等差数列,并求的表达式.
(本小题满分12分)如图:、是以为直径的圆上两点,,,是上一点,且,将圆沿直径折起,使点在平面的射影在上. (1)求证:平面; (2)求证:平面; (3)求三棱锥的体积.
某高校在2010年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示。 (1)求第3、4、5组的频率; (2)为了能选拔出最优秀的学生,该校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少学生进入第二轮面试? (3)在(2)的前提下,学校决定在这6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有一名学生被甲考官面试的概率。