在中,满足:,是的中点.(1)若,求向量与向量的夹角的余弦值;(2)若点是边上一点,,且,求的最小值.
桶圆 x 2 2 + y 2 = 1 , F 1 , F 2 分别为左右焦点, 过点 P m , 0 ( m < - 2 ) 的直线交椭圆于点 A , B 且点 A , B 在 x 轴的上方, A 在 P , B 的中间.
(1) 若 B 是上顶点, B F 1 ⃗ = P F 1 ⃗ , 求 m .
(2) 若 F 1 A ⃗ ⋅ F 2 A ⃗ = 1 3 , 且 O 到 l 的距离为 4 15 15 , 求直线 l 的方程.
(3) 求证:对任意的 m < - 2 , 使得 F 1 A ∥ B F 2 的直线有且仅有一条.
已知某企业 2021 年第一季度的营业额为 1 . 1 亿元, 以后每个季度的营业额比上个季度增加 0 . 05 亿元, 该 企业第一季度的利润为 0 . 16 亿,以后每季度比前一季度增长 4 % .
(1) 求2021年起前20季度营业额的总和;
(2) 请问哪一季度的利润首次超过该季度营业额的 18 % ?
已知在 △ ABC 中, A , B , C 所对边分别为 a , b , c , 且 a = 3 , b = 2 c .
(1) 若 A = 2 π 3 , 求 △ ABC 的面积. (2) 若 2 sin B - sin C = 1 , 求 △ ABC 的周长.
如图, 在长方体 ABCD - A 1 B 1 C 1 D 1 中, 已知 AB = BC = 2 , A A 1 = 3 .
(1) 若点 P 是棱 A 1 D 1 上的动点, 求三棱锥 C - PAD 的体积.
(2) 求直线 A B 1 与平面 AC C 1 A 1 的夹角大小.
定义 R p 数列 a n : 对 p ∈ R , 满足:
① a 1 + p ⩾ 0 , a 2 + p = 0 ;
② ∀ n ∈ N * , a 4 n - 1 < a 4 n ;
③ ∀ m , n ∈ N * , a m + n ∈ a m + a n + p , a m + a n + p + 1 .
(1) 对前 4 项 2 , - 2 , 0 , 1 的数列, 可以是 R 2 数列吗? 说明理由.
(2) 若 a n 是 R 0 数列, 求 a 5 的值.
(3) 是否存在 p ∈ R , 使得存在 R p 数列 a n , 对任意 n ∈ N * , 满足 S n ⩾ S 10 ? 若存在, 求出所有这样的 p ; 若不存在, 请说明理由.