已知圆,若椭圆的右顶点为圆的圆心,离心率为.(1)求椭圆的方程;(2)若存在直线,使得直线与椭圆分别交于两点,与圆分别交于两点,点在线段上,且,求圆的半径的取值范围.
已知椭圆的离心率为,定点,椭圆短轴的端点是、,且. (1)求椭圆两焦点与点构成三角形的面积; (2)设过点且斜率不为的直线交椭圆于,两点.试问轴上是否存在定点,使平分?若存在,求出点的坐标;若不存在,说明理由.
如图所示,已知圆O1与圆O2外切,它们的半径分别为4、2,圆C与圆O1、圆O2外切. (1)建立适当的坐标系,求圆C的圆心的轨迹方程; (2)在(1)的坐标系中,若圆C的半径为3,求圆C的方程.
抛物线的准线方程为,过抛物线上的两点A,B作正方形ABCD使得边CD直线方程为求正方形的边长
已知三角形的三个顶点坐标分别为:点A(0,1)、B(4,-1)、C(2,5) (1)若经过点A的直线l与点B和点C的距离相等,求直线l的方程; (2)若点是外接圆上的动点,求的取值范围.
中心在原点,焦点在坐标轴上的一个椭圆与一双曲线有共同的焦点F1,F2,且,椭圆的长半轴比双曲线的半实轴长,离心率之比为2:3。求这两条曲线的方程