已知圆直线与圆相切,且交椭圆于两点,是椭圆的半焦距,,(Ⅰ)求的值;(Ⅱ)O为坐标原点,若求椭圆的方程;(Ⅲ) 在(Ⅱ)的条件下,设椭圆的左右顶点分别为A,B,动点,直线AS,BS与直线分别交于M,N两点,求线段MN的长度的最小值.
已知,,对任意实数满足:(Ⅰ)当时求的表达式(Ⅱ)若,求(III)记,试证.
已知椭圆的离心率,为过点和上顶点的直线,下顶点与的距离为.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆的动弦交于, 若为线段的中点,线段的中垂线和x轴交点为,试求的范围.
如图,已知正三棱柱的底面边长是2,D是侧棱的中点,平面ABD和平面的交线为MN. (Ⅰ)试证明; (Ⅱ)若直线AD与侧面所成的角为,试求二面角的大小.
袋子里有大小相同的3个红球和4个黑球,今从袋子里随机取球. (Ⅰ)若有放回地摸出4个球,求取出的红球数不小于黑球数的概率; (Ⅱ)若无放回地摸出4个球,①求取出的红球数ξ的概率分布列和数学期望;②求取出的红球数不小于黑球数的概率,并比较的大小.
设平面上向量,,与不共线, (Ⅰ)证明向量与垂直;(Ⅱ)若两个向量与的模相等,试求角.