设函数.(l)求函数的最小正周期;(2)求函数的单调递增区间.
(本小题满分16分)已知椭圆的离心率为,并且椭圆经过点,过原点的直线与椭圆交于两点,椭圆上一点满足.(1)求椭圆的方程;(2)证明:为定值;(3)是否存在定圆,使得直线绕原点转动时,恒与该定圆相切,若存在,求出该定圆的方程,若不存在,说明理由.
(本小题满分14分)某商场为促销要准备一些正三棱锥形状的装饰品,用半径为的圆形包装纸包装.要求如下:正三棱锥的底面中心与包装纸的圆心重合,包装纸不能裁剪,沿底边向上翻折,其边缘恰好达到三棱锥的顶点,如图所示.设正三棱锥的底面边长为,体积为.(1)求关于的函数关系式;(2)在所有能用这种包装纸包装的正三棱锥装饰品中,的最大值是多少?并求此时的值.
(本小题满分14分)如图,在斜三棱柱中,侧面是边长为的菱形,.在面中,,,为的中点,过三点的平面交于点.(1)求证:为中点;(2)求证:平面平面.
(本小题满分14分)在中,,. (1)求的值;(2)若,求的面积.
(本小题满分14分)已知函数,且对任意,都有.(1)求,的关系式;(2)若存在两个极值点,,且,求出的取值范围并证明;(3)在(2)的条件下,判断零点的个数,并说明理由.