已知直角梯形ABCD中,,,且,点E、F分别在AD、BC上,满足.现将此梯形沿EF折叠成如图所示图形,且使.(1)求证:AE⊥平面ABCD;(2)求二面角的大小.
(本小题12分)设复数满足,且是纯虚数,求。
(本小题14分)(Ⅰ)若为的极值点,求的值;(Ⅱ)若的图象在点处的切线方程为,求在区间上的最大值;(Ⅲ)当时,若在区间上不单调,求的取值范围.
(本小题12分)已知双曲线的中心在原点,左、右焦点F1、F2在坐标轴上,渐近线为,且过点。(1)求双曲线方程。(2)若点在双曲线上,求证:;
、(本小题12分)设函数,是实数,是自然对数的底数)(1)当时,求的单调区间;(2)若直线与函数的图象都相切,且与函数的图象相切于点(1,0),求P的值。
(本小题12分)已知椭圆C的左右焦点坐标分别是(-1,0),(1,0),离心率,直线与椭圆C交于不同的两点M,N,以线段MN为直径作圆P。(1)求椭圆C的方程;(2)若圆P恰过坐标原点,求圆P的方程;