平行四边形中,,,,以为折线,把折起,使平面平面,连结.(Ⅰ)求证:; (Ⅱ)求二面角的大小.
如图,已知正方形ABCD的边长为1,FD⊥平面ABCD,EB⊥平面ABCD,FD=BE=1,M为BC边上的动点.试探究点M的位置,使F—AE—M为直二面角 .
已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线经过点,又知直线与双曲线C相交于A、B两点. (1)求双曲线C的方程; (2)若,求实数k值.
图形P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB,Q是PC中点.AC,BD交于O点. (1)二面角Q-BD-C的大小: (2求二面角B-QD-C的大小.
设函数 (1)设的内角,且为钝角,求的最小值; (2)设是锐角的内角,且求的三个内角的大小和AC边的长.
已知二次函数 (1)若试判断函数零点个数; (2)若对任意的,且<,(>0),试证明:>成立。 (3)是否存在,使同时满足以下条件:①对任意,,且②对任意的,都有?若存在,求出的值,若不存在,请说明理由。