平行四边形中,,,,以为折线,把折起,使平面平面,连结.(Ⅰ)求证:; (Ⅱ)求二面角的大小.
{an}为等差数列,公差d≠0,an≠0,(n∈N*),且akx2+2ak+1x+ak+2=0(k∈N*)(1)求证:当k取不同自然数时,此方程有公共根;(2)若方程不同的根依次为x1,x2,…,xn,…,求证:数列为等差数列.
设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2·b4=a3,分别求出{an}及{bn}的前n项和S10及T10.
已知数列{an}为等差数列,公差d≠0,由{an}中的部分项组成的数列a,a,…,a,…为等比数列,其中b1=1,b2=5,b3=17.(1)求数列{bn}的通项公式;(2)记Tn=Cb1+Cb2+Cb3+…+Cbn,求.
设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.(1)求公差d的取值范围;(2)指出S1、S2、…、S12中哪一个值最大,并说明理由.
已知函数f(x)在(-∞,0)∪(0,+∞)上有定义,且在(0,+∞)上是增函数,f(1)=0,又g(θ)=sin2θ-mcosθ-2m,θ∈[0,],设M={m|g(θ)<0,m∈R},N={m|f[g(θ)]<0},求M∩N.