若函数f(x)=-x3+6x2-9x+m在区间[0,4]上的最小值为2,求它在该区间上的最大值.
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及的表达式;(2)隔热层修建多厚时,总费用达到最小,并求最小值.
已知函数是偶函数.(1)求k的值;(2)若方程有解,求m的取值范围.
设函数,其中,角的顶点与坐标原点重合,始边与轴非负半轴重合,终边经过点,且.(1)若点的坐标为(-),求的值;(2)若点为平面区域上的一个动点,试确定角的取值范围,并求函数的值域.
设命题p:函数的定义域为R;命题q:对一切的实数恒成立,如果命题“p且q”为假命题,求实数a的取值范围.
已知函数图象上一点处的切线方程为.(1)求的值;(2)若方程在内有两个不等实根,求的取值范围(其中为自然对数的底数);(3)令,若的图象与轴交于(其中),的中点为,求证:在处的导数