过抛物线的对称轴上的定点,作直线与抛物线相交于两点.(I)试证明两点的纵坐标之积为定值;(II)若点是定直线上的任一点,试探索三条直线的斜率之间的关系,并给出证明.
函数f(x)=是定义在(-1,1)上的奇函数,且f=.(1)确定函数f(x)的解析式;(2)用定义证明f(x)在(-1,1)上是增函数;(3)解不等式f(t-1)+f(t)<0.
设数列的前项和为,数列为等比数列,且,。(1)求数列和的通项公式; (2)设,求数列的前项和。
如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C三点进行测量。已知,,于处测得水深,于处测得水深,于处测得水深,求的余弦值。
围建一个面积为360的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2的进出口,如图所示。已知旧墙的维修费用为45元/,新墙的造价为180元/。设利用的旧墙长度为(单位:),修建此矩形场地围墙的总费用为(单位:元) (Ⅰ)将表示为的函数;(Ⅱ)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
在各项均为负数的数列中,已知,且,(1)求证:数列是等比数列,并求出通项公式。(2)试问是否为该数列的项?若是,是第几项?若不是,请说明理由。