围建一个面积为360的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2的进出口,如图所示。已知旧墙的维修费用为45元/,新墙的造价为180元/。设利用的旧墙长度为(单位:),修建此矩形场地围墙的总费用为(单位:元) (Ⅰ)将表示为的函数;(Ⅱ)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
已知函数. (I)若在处取得极值, ①求、的值;②存在,使得不等式成立,求的最小值; (II)当时,若在上是单调函数,求的取值范围.(参考数据)
如图,为半圆,为半圆直径,为半圆圆心,且,为线段的中点,已知,曲线过点,动点在曲线上运动且保持的值不变. (I)建立适当的平面直角坐标系,求曲线的方程; (II)过点的直线与曲线交于两点,与所在直线交于点,,证明:为定值.
如图,是圆的直径,点在圆上,,交于点,平面,,. (1)证明:; (2)求平面与平面所成的锐二面角的余弦值.
按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动). 该校高2010级一班50名学生在上学期参加活动的次数统计如图所示. (I)求该班学生参加活动的人均次数;(II)从该班中任意选两名学生,求他们参加活动次数恰好相等的概率. (III)从该班中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望.
已知各项都不相等的等差数列的前六项和为60,且的等比中项. (I)求数列的通项公式; (II)若数列的前n项和.