设椭圆=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.(1)求椭圆的方程;(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若+=8,求k的值.
(本小题满分12分)一个盒子中装有大小相同的小球个,在小球上分别标有,,,,的号码,已知从盒子中随机地取出个球,个球的号码最大值为的概率为.(1)求的值;(2)现从盒子中随机地取出个球,记所取个球的号码中,连续自然数的个数的最大值为随机变量(如取时,;取时,或取时,;取时,).求的值;求随机变量的分布列及期望.
(本小题满分12分)如图,正四棱锥中,.(1)求证:;(2)在线段上是否存在点,使得二面角的大小为,若存在,求出;若不存在,试说明理由.
(本小题满分12分)中内角、、的对边分别为、、,为锐角,向量,,且.(1)求的大小;(2)若,求的最大值.
(本小题满分10分)选修4-5:不等式选讲已知函数.(Ⅰ)解不等式;(Ⅱ)若,且,求证:.
(本小题满分10分)选修4-4:坐标系与参数方程已知在直角坐标系中,直线的参数方程为,(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(Ⅰ)求直线的普通方程和曲线的直角坐标方程;(Ⅱ)设点是曲线上的一个动点,求它到直线的距离的取值范围.