设,当时,对应值的集合为.(1)求的值;(2)若,求该函数的最值.
已知抛物线 C 的顶点为原点,其焦点 F ( 0 , c ) ( c > 0 ) 到直线 l : x - y - 2 = 0 的距离为 3 2 2 .设 P 为直线 l 上的点,过点 P 作抛物线 C 的两条切线 P A , P B ,其中 A , B 为切点 (Ⅰ) 求抛物线 C 的方程; (Ⅱ) 当点 P ( x 0 , y 0 ) 为直线上的定点时,求直线 A B 的方程; (Ⅲ) 当点 P 在直线 l 上移动时,求 A F · B F 的最小值.
设数列 { a n } 的前 n 项和为 S n .已知 a 1 = 1 , 2 S n n = a n + 1 - 1 3 n 2 - n - 2 3 , n ∈ N + . (Ⅰ) 求 a 2 的值; (Ⅱ) 求数列 { a n } 的通项公式; (Ⅲ) 证明:对一切正整数 n ,有 1 a 1 + 1 a 2 + . . . + 1 a n < 7 4 .
如图①,在等腰直角三角形 A B C 中, ∠ A = 90 ° , B C = 6 , D , E 分别是 A C , A B 上的点, C D = B E = 2 , O 为 B C 的中点.将 △ A D E 沿 D E 折起,得到如图②所示的四棱锥 A ` - B C D E ,其中 A ` O = 3 .
(Ⅰ) 证明: A ` O ⊥ 平面 B C D E ; (Ⅱ) 求二面角 A ` - C D - B 的平面角的余弦值.
某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.
(Ⅰ) 根据茎叶图计算样本均值; (Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.
已知函数 f ( x ) = 2 cos ( x - π 12 ) , x ∈ R . (Ⅰ) 求 f ( - π 6 ) 的值; (Ⅱ) 若 cos θ = 3 5 , θ ∈ ( 3 π 2 , 2 π ) ,求 f ( 2 θ + π 3 ) .