如果我们定义:“到三角形的两个顶点距离相等的点,叫做此三角形的开心点。”那么:(1)如图1,观察并思考,△ABC的开心点有 个(2)如图2,CD为等边三角形ABC的高,开心点P在高CD上,且PD=,则∠APB的度数为 (3)已知△ABC为直角三角形,斜边BC=5,AB=3,开心点P在AC边上,试探究PA的长。
2010年5月1日至20日的20天里,每天参观上海世博会的人数统计如下:(单位:万人次)20,22,13,15,11,11,14,20,14,16,18,18,22,24,34,24,24,26,29,30.(1)写出以上20个数据的众数、中位数、平均数;(2)若按照前20天参观人数的平均数计算,估计上海世博会期间(2010年5月1日至2010年10月31日)参观的总人数约是多少万人次?(3)要达到组委会预计的参观上海世博会的总人数约为7000万人次,2010年5月21日至2010年10月31日期间,平均每天参观人数约为多少万人次?(结果精确到0.01万人次)
如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点.抛物线与轴交于点,与直线交于点,且分别与圆相切于点和点.(1)求抛物线的解析式;(2)抛物线的对称轴交轴于点,连结,并延长交圆于,求的长.(3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.
在四边形中,,且.取的中点,连结.(1)试判断三角形的形状;(2)在线段上,是否存在点,使.若存在,请求出的长;若不存在,请说明理由.
如图所示,圆是的外接圆,与的平分线相交于点,延长交圆于点,连结.(1)求证:;(2)若圆的半径为10cm,,求的面积.
要对一块长60米、宽40米的矩形荒地进行绿化和硬化.(1)设计方案如图①所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形面积的,求P、Q两块绿地周围的硬化路面的宽.(2)某同学有如下设想:设计绿化区域为相外切的两等圆,圆心分别为和,且到的距离与到的距离都相等,其余为硬化地面,如图②所示,这个设想是否成立?若成立,求出圆的半径;若不成立,说明理由.