如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L⊥直线AB。点P是圆O上异于A、B的任意一点,直线PA、PB分别交L与M、N点。试建立适当的直角坐标系,解决下列问题:(1)若∠PAB=30°,求以MN为直径的圆方程;(2)当点P变化时,求证:以MN为直径的圆必过圆O内的一定点。
已知函数 (Ⅰ)若函数y=f(x)的图象切x轴于点(2,0),求a、b的值; (Ⅱ)设函数y="f(x)" 的图象上任意一点的切线斜率为k,试求的充要条件; (Ⅲ)若函数y=f(x)的图象上任意不同的两点的连线的斜率小于1,求证。
已知:复数,,且,其中、为△ABC的内角,、、为角、、所对的边.(Ⅰ)求角的大小;(Ⅱ) 若,求△ABC的面积.
已知函数(1)求反函数(2)判断是奇函数还是偶函数并证明。
设数列{an}的首项a1∈(0,1),,n=2,3,4,….(Ⅰ)求{an}的通项公式;(Ⅱ)设,证明bn<bn+1,其中n为正整数.
△ABC的角A、B、C的对边分别为a、b、c,=(2b-c,a),=(cosA,-cosC),且⊥.(Ⅰ)求角A的大小;(Ⅱ)当y=2sin2B+sin(2B+)取最大值时,求角的大小.