(文)已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线 相切.(1)求圆的标准方程;(2)设直线与圆相交于两点,求实数的取值范围;(3)在(2)的条件下,是否存在实数,使得弦的垂直平分线过点,
设点A和B为抛物线y2=4px(p>0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M的轨迹方程,并说明它表示什么曲线.
如图所示,已知P(4,0)是圆x2+y2=36内的一点,A、B是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.
已知|a|<1,|b|<1,|c|<1,求证: abc+2>a+b+c.
某校一年级为配合素质教育,利用一间教室作为学生绘画成果展览室,为节约经费,他们利用课桌作为展台,将装画的镜框放置桌上,斜靠展出,已知镜框对桌面的倾斜角为α(90°≤α<180°)镜框中,画的上、下边缘与镜框下边缘分别相距a m,b m,(a>b). 问学生距离镜框下缘多远看画的效果最佳?
设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1、x2满足0<x1<x2<。(1)当x∈[0,x1时,证明x<f(x)<x1;(2)设函数f(x)的图像关于直线x=x0对称,证明:x0<。