已知数列中,(Ⅰ)求证:是等比数列,并求的通项公式;(Ⅱ)数列满足,数列的前n项和为,若不等式对一切恒成立,求的取值范围。
(本题13分)已知。(1)若,求上的最大值与最小值;(2)当时,求证;(3)当时,求证:
(本题12分)某汽车厂有一条价值为万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值,经过市场调查,产品的增加值万元与技术改造投入万元之间满足:①与成正比;②当时,,并且技术改造投入满足,其中为常数且。(1)求表达式及定义域;(2)求出产品增加值的最大值及相应的值。
(本题12分)函数的定义域为,(1)若,求函数的值域;(2)求函数在上的最大值和最小值,并求出函数取最值时相应 的值。
(本题12分)已知数列的前项和,且是和1的等差中项。(1)求数列与的通项公式;(2)若,求;(3)若是否存在,使?说明理由。
(本题12分)已知命题关于的方程有负根;命题不等式的解集为,若或是真命题,且是假命题,求实数的范围。