已知定点,,直线(为常数). (1)若点、到直线的距离相等,求实数的值;(2)对于上任意一点,恒为锐角,求实数的取值范围.
已知{an}是等差数列,其前n项的和为Sn, {bn}是等比数列,且a1=b1=2,a4+b4=21, S4+b4=30. (1)求数列{an}和{bn}的通项公式; (2)记cn=anbn,n∈N*,求数列{cn}的前n项和.
如图,三棱柱ABC-A1B1C1中,M,N分别为AB,B1C1的中点. (1)求证:MN∥平面AA1C1C; (2)若CC1=CB1,CA=CB,平面CC1B1B⊥平面ABC,求证:AB^平面CMN.
已知函数f(x)=2sin(2x+φ)(0<φ<2π)的图象过点(,-2). (1)求φ的值; (2)若f()=,-<α<0,求sin(2α-)的值.
某商店为了吸引顾客,设计了一个摸球小游戏,顾客从装有1个红球,1个白球,3个黑球的袋中一次随机的摸2个球,设计奖励方式如下表:
(1)某顾客在一次摸球中获得奖励X元,求X的概率分布表与数学期望; (2)某顾客参与两次摸球,求他能中奖的概率.
如图,已知长方体ABCD-A1B1C1D1中,AB=3,BC=2,CC1=5,E是棱CC1上不同于端点的点,且. (1) 当∠BEA1为钝角时,求实数λ的取值范围; (2) 若λ=,记二面角B1-A1B-E的的大小为θ,求|cosθ|.