设 O为坐标原点,动点 M在椭圆 C: x 2 2 + y 2=1上,过 M作 x轴的垂线,垂足为 N,点 P满足 NP → = 2 NM → .
(1)求点 P的轨迹方程;
(2)设点 Q在直线 x=﹣3上,且 OP → • PQ → = 1.证明:过点 P且垂直于 OQ的直线 l过 C的左焦点 F.
已知向量m=(sin x,1),n=,函数f(x)=(m+n)·m. (1)求函数f(x)的最小正周期T及单调递增区间; (2)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=2,c=4,且f(A)是函数f(x)在上的最大值,求△ABC的面积S.
已知函数f(x)=x3-3ax2+3x+1. (1)设a=2,求f(x)的单调区间; (2)设f(x)在区间(2,3)中至少有一个极值点,求a的取值范围.
已知△ABC的内角A、B、C的对边分别为a、b、c,sin Ccos C-cos2C=,且c=3. (1)求角C; (2)若向量m=(1,sin A)与n=(2,sin B)共线,求a、b的值.
设函数f(x)=ax2+(b-2)x+3(a≠0),若不等式f(x)>0的解集为(-1,3). (1)求a,b的值; (2)若函数f(x)在x∈[m,1]上的最小值为1,求实数m的值.
设函数f(x)=ex-ax-2. (1)求f(x)的单调区间; (2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.