如图,四棱锥 P﹣ ABCD中,侧面 PAD为等边三角形且垂直于底面 ABCD, AB= BC = 1 2 AD,∠ BAD=∠ ABC=90°.
(1)证明:直线 BC∥平面 PAD;
(2)若△ PCD面积为2 7 ,求四棱锥 P﹣ ABCD的体积.
设.(1)解不等式;(2)若对任意实数,恒成立,求实数a的取值范围.
在△中,角的对边分别为,且满足.(1)求的大小; (2)若,求的值.
已知函数.(1)函数在处的切线方程为,求的值;(2)当时,若曲线上存在三条斜率为的切线,求实数的取值范围.
在平面直角坐标系中,两点的坐标分别为,,动点满足:直线与直线的斜率之积为.(1)求动点的轨迹方程;(2)设,为动点的轨迹的左右顶点,为直线上的一动点(点不在轴上),连交的轨迹于点,连并延长交的轨迹于点,试问直线是否过定点?若成立,请求出该定点坐标,若不成立,请说明理由.
如图,在中,边上的中线长为3,且,.(1)求的值;(2)求边的长.