数列的前项和为,且是和的等差中项,等差数列满足,.(1)求数列、的通项公式;(2)设,数列的前项和为,证明:.
已知 p:方程有两个不等的实根;q:方程 无实根.若“p”为假命题,“q”为真命题,求实数 m 的取值范围.
求与椭圆有共同焦点,且过点的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率.
(本小题14分)数列的前项和为,且对都有,则:(1)求数列的前三项;(2)根据上述结果,归纳猜想数列的通项公式,并用数学归纳法加以证明.(3)求证:对任意都有.
(本小题满分13分)(1)3人坐在有八个座位的一排上,若每人的左右两边都要有空位,则不同坐法的种数为几种?(2)有5个人并排站成一排,如果甲必须在乙的右边,则不同的排法有多少种?(3)现有10个保送上大学的名额,分配给7所学校,每校至少有1个名额,问名额分配的方法共有多少种?
(本小题满分13分)已知定义域为R的函数是奇函数.(1)求a的值;(2)判断的单调性(不需要写出理由);(3)若对任意的,不等式恒成立,求的取值范围.