在一张节目表上原有6个节目,如果保持这些节目的相对顺序不变,再添加进去三个节目,求共有多少种安排方法?
已知二次函数+的图象通过原点,对称轴为,.是的导函数,且. (1)求的表达式(含有字母); (2)若数列满足,且,求数列的通项公式; (3)在(2)条件下,若,,是否存在自然数,使得当时恒成立?若存在,求出最小的;若不存在,说明理由.
已知椭圆过和点. (1)求椭圆的方程; (2)设过点的直线与椭圆交于两点,且,求直线的方程.
如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,,平面底面,是的中点. (1)求证://平面; (2)求证:; (3)求三棱锥的体积.
从某校高三上学期期末数学考试成绩中,随机抽取了名学生的成绩得到频率分布直方图如下图所示: (1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分(平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和); (2)若用分层抽样的方法从分数在和的学生中共抽取人,该人中成绩在的有几人? (3)在(2)中抽取的人中,随机抽取人,求分数在和各人的概率.
已知函数,. (1)求函数的最小正周期; (2)在中,角、、的对边分别为、、,且满足, 求的值.