问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.
如图,在⊙O中,∠ACB=∠BDC=60°,AC=,(1)判断△ABC的形状并证明你的结论;(2)求⊙O的周长
在平面直角坐标系中,△ABC的顶点坐标是A(-7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,-1),E(-1,-7).(1)试说明如何平移线段AC,使其与线段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.
如图所示,在一块长为32米,宽为15米的矩形草地上,在中间要设计一横二竖的供居民散步的小路,要使小路的面积是草地总面积的八分之一,请问小路的宽应是多少米?(注:所有小路进出口的宽度相等,且每段小路均为平行四边形)
我们知道:对于任何实数,①∵≥0,∴+1>0;②∵≥0,∴+>0.模仿上述方法解答: 求证:(1)对于任何实数,均有:>0;(2)不论为何实数,多项式的值总大于的值.
某种储蓄的月利率是0.36%,今存入本金100元,求本息和(本金与利息的和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和.