问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.
(本小题12分)已知□ABCD,对角线AC与BD相交于点O,点P在边AD上,过点P分别作PE⊥AC、PF⊥BD,垂足分别为E、F,PE=PF. (1)如图,若PE=,EO=1,求∠EPF的度数; (2)若点P是AD的中点,点F是DO的中点,BF=BC+3-4,求BC的长.
(本小题10分)已知关于x的方程x2-(m-3)x+m-4=0. (1)求证:方程总有两个实数根; (2)若m是整数,方程有一个根大于-7且小于-3,求反比例函数的解析式。
(本小题8分)(1)如图1,□ABCD中,过对角线BD上一点P作EF∥BC,HG∥AB,写出图中面积相等的一对平行四边形的名称为,; (2)如图2,点P为□ABCD内一点,过点P分别作AD、AB的平行线分别交□ABCD的四边于点E、F、G、H.已知S▱BHPE=3,S▱PFDG=5,则S△PAC= ; (3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD的面积为11,则菱形EFGH的周长为 .(写出简要解答步骤)
(本小题8分)已知A组数据如下:0,1,-2,-1,0,-1,3. (1)求A组数据的平均数; (2)从A组数据中选取5个数据,记这5个数据为B组数据.要求B组数据满足两个条件:①它的平均数与A组数据的平均数相等;②它的方差比A组数据的方差大.你选取的B组数据是.(写出具体解答步骤)
(本小题6分) (1)计算: (2)当a<1时,化简: