如图是某舰艇雷达显示屏,图中目标A,记为A(3,30),表示AO=3,∠AOM=30°,其中O为圆心.请解答下列问题:(1)在图中标出目标B(6,15),C(8,105);(2)求B(6,15)、C(8,105)两个目标之间的距离.
如图,AC是▱ABCD的对角线, ∠ BAC = ∠ DAC .
(1)求证: AB = BC ;
(2)若 AB = 2 , AC = 2 3 ,求▱ABCD的面积.
为积极响应市委政府“加快建设天蓝•水碧•地绿的美丽长沙”的号召,我市某街道决定从备选的五种树中选购一种进行栽种.为了更好地了解社情民意,工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图两个不完整的统计图:
请根据所给信息解答以下问题:
(1)这次参与调查的居民人数为: ;
(2)请将条形统计图补充完整;
(3)请计算扇形统计图中“枫树”所在扇形的圆心角度数;
(4)已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?
已知抛物线 y = a ( x - 1 ) 2 - 3 ( a ≠ 0 ) 的图象与y轴交于点 A ( 0 ,﹣ 2 ) ,顶点为B.
(1)试确定a的值,并写出B点的坐标;
(2)若一次函数的图象经过A、B两点,试写出一次函数的解析式;
(3)试在x轴上求一点P,使得△PAB的周长取最小值;
(4)若将抛物线平移 m ( m ≠ 0 ) 个单位,所得新抛物线的顶点记作C,与原抛物线的交点记作D,问:点O、C、D能否在同一条直线上?若能,请求出m的值;若不能,请说明理由.
如图,AB是⊙O的直径,C是⊙O上的一点,直线MN经过点C,过点A作直线MN的垂线,垂足为点D,且 ∠ BAC = ∠ CAD .
(1)求证:直线MN是⊙O的切线;
(2)若 CD = 3 , ∠ CAD = 30 ° ,求⊙O的半径.
张家界到长沙的距离约为320km,小明开着大货车,小华开着小轿车,都从张家界同时去长沙,已知小轿车的速度是大货车的1.25倍,小华比小明提前1小时到达长沙.试问:大货车和小轿车的速度各是多少?