如图是某舰艇雷达显示屏,图中目标A,记为A(3,30),表示AO=3,∠AOM=30°,其中O为圆心.请解答下列问题:(1)在图中标出目标B(6,15),C(8,105);(2)求B(6,15)、C(8,105)两个目标之间的距离.
(1)解方程:+1= ; (2)解不等式组:,并写出它的自然数解.
(1)计算:-()-1- (2)先化简,再求值:÷(x-),其中x=-1
如图,一条直线与反比例函数y1=的图象交于A(1,5),B(5,n)两点,与x轴交于D点, AC⊥x轴,垂足为C.(1)如图甲,①求反比例函数的解析式;②求n的值及D点坐标.(2)如图乙,若点E在线段AD上运动,连结CE,作∠CEF=45°,EF交AC于F点.①试说明△CDE∽△EAF;②当△ECF为等腰三角形时,请求出F点的坐标.
如图,矩形OABC的顶点B点坐标为(3,2),点D是BC的中点.(1)将△ABD向左平移3个单位,则点D的对应点E的坐标为 ;(2)若点E在双曲线y=上,则k的值为 ,直线OE与双曲线的另一个交点F的坐标是 ;(3)若在y轴上有一动点P,当点P运动到何处时PB+PF的值最小?求出此时的P点坐标.
某电器城经销A型号彩电,今年四月份毎台彩电售价为2000元.与去年同期相比,结果卖出彩电的数量相同的,但去年销售额为5万元,今年销售额为4万元.(1)问去年四月份每台A型号彩电售价是多少元?(2)为了改善经营,电器城决定再经销B型号彩电,已知A型号彩电每台进货价为1800元,B型号彩电每台进货价为1500元,电器城预计用不多于3.3万元且不少于3.2万元的资金购进这两种彩电共20台,问有哪几种进货方案?(3)电器城准备把A型号彩电继续以原价每台2000元的价格出售,B型号彩电以每台1800元的价格出售,在这批彩电全部卖出的前提下,如何进货才能使电器城获利最大?最大利润是多少?