已知椭圆的中心在原点,离心率,右焦点为.(1)求椭圆的方程;(2)设椭圆的上顶点为,在椭圆上是否存在点,使得向量与共线?若存在,求直线的方程;若不存在,简要说明理由.
已知圆C与y轴相切,圆心在直线x-3y=0上,且在直线y=x上截得的弦长2.求 圆C的方程.
已知函数(常数. (Ⅰ) 当时,求曲线在点处的切线方程; (Ⅱ)讨论函数在区间上零点的个数(为自然对数的底数).
数列首项,前项和与之间满足 (1)求证:数列是等差数列 (2)求数列的通项公式 (3)设存在正数,使对于一切都成立,求的最大值。