已知点A(2,0),. P为上的动点,线段BP上的点M满足|MP|=|MA|. (Ⅰ)求点M的轨迹C的方程; (Ⅱ)过点B(-2,0)的直线与轨迹C交于S、T两点,且,求直线的方程.
已知椭圆的中心为坐标原点,其离心率为,椭圆的一个焦点和抛物线的焦点重合。 (1)求椭圆的方程 (2)过点的动直线交椭圆于、两点,试问:在坐标平面上是否存在一个定点,使得无论如何转动,以为直径的圆恒过点,若存在,说出点的坐标,若不存在,说明理由。
已知抛物线,过其焦点且斜率为-1的直线交抛物线于两点,若线段的中点的纵坐标为-2 (1)求抛物线的方程; (2)过点的直线交抛物线于两不同点,交轴于点,已知,则是否为定值?若是,求出其值;若不是,说明理由.
如图,已知四棱锥的底面为菱形,,,. (1)求证:; (2)求二面角的余弦值.
一个盒子里装有三张卡片,分别标记有数字,,,这三张卡片除标记的数字外完全相同。随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为,,. (1)求“抽取的卡片上的数字满足”的概率; (2)求“抽取的卡片上的数字,,不完全相同”的概率.
已知空间中三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设a=,b=. (1)求向量a与向量b的夹角的余弦值; (2)若ka+b与ka-2b互相垂直,求实数k的值