在锐角中,三内角所对的边分别为.设,(Ⅰ)若,求的面积;(Ⅱ)求的最大值.
已知函数. (1)求的单调递减区间; (2)若在区间上的最大值为,求它在该区间上的最小值.
已知顶点在原点,焦点在轴上的抛物线过点. (1)求抛物线的标准方程; (2)若抛物线与直线交于、两点,求证:.
已知命题:任意,,命题:函数在上单调递减. (1)若命题为真命题,求实数的取值范围; (2)若和均为真命题,求实数的取值范围.
已知抛物线与椭圆有公共焦点,且椭圆过点. (1)求椭圆方程; (2)点、是椭圆的上下顶点,点为右顶点,记过点、、的圆为⊙,过点作⊙的切线,求直线的方程; (3)过椭圆的上顶点作互相垂直的两条直线分别交椭圆于另外一点、,试问直线是否经过定点,若是,求出定点坐标;若不是,说明理由.
在长方体中,为线段中点. (1)求直线与直线所成的角的余弦值; (2)若,求二面角的大小; (3)在棱上是否存在一点,使得平面?若存在,求的长;若不存在,说明理由.