对某校高一年级学生参加社区服务次数统计,随机抽取了名学生作为样本,得到这名学生参加社区服务的次数,根据此数据作出了频数与频率的统计表如下:(1)求出表中的值;(2)在所取样本中,从参加社区服务的次数不少于次的学生中任选人,求至少一人参加社区服务次数在区间内的概率.
(小题满分12分)已知函数在点处的切线的斜率为. (Ⅰ)求实数的值; (Ⅱ)证明:函数的图象恒在直线的下方(点除外); (Ⅲ)设点,当时,直线的斜率恒大于,试求实数的取值范围.
(本小题满分12分)已知函数f(x)=x2-2(a+1)x+2alnx(a>0). (1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程; (2)求f(x)的单调区间; (3)若f(x)≤0在区间[1,e]上恒成立,求实数a的取值范围.
(本小题满分10分)直三棱柱ABC—A′B′C′中,AC=BC=AA′,∠ACB=90°,D、E分别为AB、BB′的中点. (1)求证:; (2)求证:平面.
如图所示,平行六面体ABCD—A1B1C1D1中,以顶点A为端点的三条棱长都为1,且两两夹角为60°. (1)求AC1的长; (2)求BD1与AC夹角的余弦值.
设数列的前n项和为,且满足. (1)求; (2)猜想数列的通项公式,并用数学归纳法证明