为了在夏季降温和冬季供暖时减少能源消耗,房屋的屋顶和外墙需要建造隔热层,某栋建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用(单位:万元)与隔热层厚度(单位:)满足关系:若不建隔热层,每年能源消耗费用为8万元。设为隔热层建造费用与20年的能源消耗费用之和。(Ⅰ)求的值及的表达式;(Ⅱ)隔热层修建多厚时,总费用最小,并求最小值.
已知曲线(为参数),曲线,将的横坐标伸长为原来的2倍,纵坐标缩短为原来的得到曲线. (1)求曲线的普通方程,曲线的直角坐标方程; (2)若点P为曲线上的任意一点,Q为曲线上的任意一点,求线段的最小值,并求此时的P的坐标.
如图,在中,是的∠A的平分线,圆经过点与切于点,与相交于,连结,. (1)求证:;(2)求证:.
已知函数. (1)讨论函数在上的单调性; (2)当时,曲线上总存在相异两点,,,使得曲线在、处的切线互相平行,求证:.
设椭圆C1:=1(a>b>0)的左、右焦点分别为为,恰是抛物线C2:的焦点,点M为C1与C2在第一象限的交点,且|MF2|=. (1)求C1的方程; (2)平面上的点N满足,直线l∥MN,且与C1交于A,B两点,若,求直线l的方程.
某地为迎接2014年索契冬奥会,举行了一场奥运选拔赛,其中甲、乙两名运动员为争取最后一个参赛名额进行的7轮比赛,其得分情况如茎叶图所示: (1)若从甲运动员的不低于80且不高于90的得分中任选3个,求其中与平均得分之差的绝对值不超过2的概率; (2)若分别从甲、乙两名运动员的每轮比赛不低于80且不高于90的得分中任选1个,求甲、乙两名运动员得分之差的绝对值的分布列与期望.