在数列中,(1)求的值;(2)证明:数列是等比数列,并求的通项公式;(3)求数列的前n项和.
已知四棱柱的底面为正方形,,、分别为棱、的中点.(1)求证:直线平面;(2)已知,,取线段的中点,求二面角的余弦值.
已知直线(为参数)和圆; (1)时,证明直线与圆总相交;(2)直线被圆截得弦长最短,求此弦长并求此时的值.
在中,.(1)求;(2)若,求的最大值,并求此时角的大小.
已知函数对任意实数,恒有,且当时,,又.(1)判断的奇偶性;(2)求证:是上的减函数;(3)求在区间上的值域;(4)若对任意的,不等式恒成立,求的取值范围.
已知一四棱锥的三视图如下,是侧棱上的动点.(Ⅰ)求四棱锥的体积;(Ⅱ)是否不论点在何位置,都有?证明你的结论.