(本小题满分分)某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(≥10)层,则每平方米的平均建筑费用为560+48(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)
如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点.(1)求证:平面PDC⊥平面PAD;(2)求点B到平面PCD的距离;(3)求二面角C-AE-D的余弦值
(14分)已知函数,(1)若函数为奇函数,求的值。(2)若,有唯一实数解,求的取值范围。(3)若,则是否存在实数(),使得函数的定义域和值域都为。若存在,求出的值;若不存在,请说明理由
(12分)已知函数(1)当时,求函数的最小值;(2)若对任意的,恒成立,试求实数的取值范围.
(12分)已知函数是定义在上的增函数,对于任意的,都有,且满足.(1)求的值; (2)求满足的的取值范围.
(12分)已知函数(1)在给定的直角坐标系内画出的图象;(2)写出的单调递增区间(不需要证明);(3)写出的最大值和最小值(不需要证明).