数列的首项为(),前项和为,且().设,().(1)求数列的通项公式;(2)当时,若对任意,恒成立,求的取值范围;(3)当时,试求三个正数,,的一组值,使得为等比数列,且,,成等差数列.
如图,长方体中,,,点,分别在 上,过点,的平面与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说明画法与理由); (Ⅱ)求平面把该长方体分成的两部分体积的比值.
某公司为了了解用户对其产品的满意度,从两地区分别随机调查了个用户,根据用户对其产品的满意度的评分,得到地区用户满意度评分的频率分布直方图和地区用户满意度评分的频率分布表. 地区用户满意度评分的频率分布直方图 地区用户满意度评分的频率分布表
(Ⅰ)描述出地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可) 地区用户满意度评分的频率分布直方图 (Ⅱ)根据用户满意度评分,将用户的满意度评分分为三个等级:
估计那个地区的用户的满意度等级为不满意的概率大,说明理由.
△ A B C 中 D 是 B C 上的点, A D 平分 ∠ B A C , B D = 2 D C .
(Ⅰ)求 sin ∠ B sin ∠ C ; (Ⅱ)若 ∠ B A C = 60 ° ,求 ∠ B .
设均为正数,且,证明: (Ⅰ)若,则; (Ⅱ)是的充要条件.
在直角坐标系中,曲线(为参数,),其中,在以为极点,轴正半轴为极轴的极坐标系中,曲线,曲线. (Ⅰ)求与交点的直角坐标; (Ⅱ)若与相交于点,与相交于点,求的最大值.