设均为正数,且证明:(1);(2).
(本小题满分14分)执行下面框图所描述的算法程序,记输出的一列数依次为,,…,,,.(注:框图中的赋值符号“”也可以写成“”或“:”)(1)若输入,写出输出结果;(2)若输入,令,证明是等差数列,并写出数列的通项公式;(3)若输入,令,.求证:.
(本小题满分14分)已知椭圆的两焦点为,,并且经过点.(1)求椭圆的方程;(2)已知圆:,直线:,证明当点在椭圆上运动时,直线与圆恒相交;并求直线被圆所截得的弦长的取值范围.
(本小题满分14分)如图1,在直角梯形中,,,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,为的中点,如图2.(1)求证:∥平面;(2)求证:平面;(3)求点到平面的距离.
(本小题满分12分)某校高三(1)班共有名学生,他们每天自主学习的时间全部在分钟到分钟之间,按他们学习时间的长短分个组统计得到如下频率分布表:
(1)求分布表中,的值;(2)某兴趣小组为研究每天自主学习的时间与学习成绩的相关性,需要在这名学生中按时间用分层抽样的方法抽取名学生进行研究,问应抽取多少名第一组的学生?(3)已知第一组的学生中男、女生均为人.在(2)的条件下抽取第一组的学生,求既有男生又有女生被抽中的概率.
(本小题满分12分)已知函数.(1)求函数的最大值并求出此时的值;(2)若,求的值.