(本小题满分12分)已知直三棱柱中,,为中点,为中点,侧面为正方形。(1)证明:平面;(2)证明:;
在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等. (1)求取出的两个球上标号为相邻整数的概率; (2)求取出的两个球上标号之和能被3整除的概率.
已知函数,若在x=1处的切线方程是3x+y-6=0 (Ⅰ)求函数的解析式; (Ⅱ)若对任意的,都有成立,求函数的最值.
已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率等于. (Ⅰ)求椭圆C的方程; (Ⅱ)过椭圆C的右焦点F作直线交椭圆C于A,B两点,交y轴于M点,若,求证为定值.
设数列的前n项和为,为等比数列,且. (1)求数列和的通项公式; (2)设,求数列的前n项和。
已知在四棱锥P-ABCD中,AD//BC, PA=PD=AD=2BC=2CD,E,F分别为AD,PC的中点. (Ⅰ)求证平面PBE; (Ⅱ)求证PA//平面BEF; (Ⅲ)若PB=AD,求二面角F-BE-C的大小.